I MAY NOT KNOW DIDDLEY...
BUT I KNOW SQUAT!
A PRIMER FOR BEGINNERS IN THE SQUAT - PART 2
Frederick C. Hatfield, Ph.D., MSS
International Sports Sciences Association
Back to Part 1, Go to Part 3
Return to Hatfield Home Page
Squatting With The Manta Ray™
The Manta Ray™ is a shoulder girdle support manufactured from indestructible hi-tech molded plastic. It clips to a straight bar and completely eliminates the discomfort of the 1” round bar pressing on your 7th cervical vertebra, or the sharp knurling ripping your flesh. I personally LOVE this thing, and if I don’t have a Safety Squat Bar™ (see below) to use, I ALWAYS have my Manta Ray™. In fact, it is a device I instruct all ISSA-certified personal fitness trainers to use for their clients. My belief is that ANYTHING that makes squats more comfortable is great because a perennial problem with squatting has always been that people just don’t like them! They’re uncomfortable to newcomers and ironheads alike! The Manta Ray™ solves this problem exquisitely.
Safety Squats
There's a training device called the "Safety Squat Bar™" (sometimes called the "Hatfield Bar") which can give you a new lease on effective off-season squat training. Some of you may have seen it collecting dust in the back of the squat platform. Pick it up! Put it on the rack and use it!
The exquisite isolation the Safety Squat Bar™ provides for your quads will be a truly unique experience, I assure you. Let's go over the good points of the Safety Squat Bar™ one by one.
Your hands are not holding the bar. This allows you to grasp the handles on the power rack. Because of the heavy loads involved in squatting, there is a tendency to "round" your back and place unnecessary stress on those easily displaceable intervertebral discs. This is avoided by exerting pressure against the power rack handles and thus maintaining a perfectly straight back throughout the entire squatting motion. Using your hands to spot yourself prevents you from falling forward or backward.
Squatting with a straight bar, you're forced to use a load that you can handle in the weakest position. This results in using an inadequate amount of weight in the strongest position of the squatting motion.
This problem is solved by use of the hands in the Safety Squat Bar™. When the "sticking point" is reached, the hands can be used to help you through it. This unique feature allows you to work with heavier weights in the ranges of movement where you are strongest and gives you help when you are weakest. You are exerting closer to your maximum effort through the entire range of motion.
The padded yolk that the Safety Squat Bar™ is equipped with effectively eliminates neck and shoulder girdle discomfort. And the fact that you needn't use your hands to hold the bar on your shoulders eliminates wrist, shoulder and elbow discomfort.
By using your hands to regulate body position, your posture under the bar can be adapted to suit your own anatomical peculiarities so that you can literally "tailor" your squatting style to afford maximum overload.
Conventional squatting places the weight behind you, fully four inches behind your body's midline. That caused you to lean or bend forward for balance. With the Safety Squat Bar, the weight is distributed directly in line with your body's midline, and completely eliminates the need to lean forward.
Finally, because you are holding onto handles build onto the squat rack, you do not back up before squatting, and you are not obliged to walk back into the rack after squatting. This element alone has the potential of eliminating up to three quarters of all squatting-related injuries.
As a final note, remember that your off-season training is NEVER meant to be a time for impressing your training buddies by seeing how much weight you can squat with -- or "still" squat with after your long layoff, as the case may be. It is a time for establishing a solid foundation for the high-intensity pre-season training to follow. It is a time for eliminating weaknesses. It is a time for establishing a high degree of limit strength in all muscles of the body in preparation for the highly ballistic speed-strength training that must be incorporated into your precontest preparation.
And remember this. Explosive strength, which can only be maximized by first establishing a supernormal level of limit strength in all of your synergistic an primary muscles, will give you your greatest squatting ability come contest day. There is no way that you can get away with being explosive before you've adequately prepared your body for the tremendous stress such training entails.
Before I give you an integrated training plan to increase your squat, let me first explain what strength is, where it comes from and how you get it. Only then will you see the wisdom of the following training programs.
THE NATURE OF STRENGTH
Strength. Most of you use this word every day. It's a word you've grown comfortable with because of your intimate relationship with it -- it's what you do. But it's an infinitely complex concept that cannot be adequately imagined in a single fleeting thought process. So many factors interrelate to produce it. If there were a single sentence that could describe strength it would be as follows:
"Your ability to exert musculoskeletal force, given constraints stemming from:
1) structural/anatomical factors,
2) physiological/biochemical factors,
3) psychoneural/psychosocial factors, and
4) external/environmental factors."
As you read this booklet, you will begin to understand strength and all the factors which affect it. You will learn how to manipulate them at will as part of an integrated approach to scientific training.
DO ALL ATHLETES NEED STRENGTH?
Even a marathon runner needs tremendous strength. But it must be of a very specific nature in order to express it footfall-per-footfall under the extreme metabolic conditions inherent in that sport. A world-class powerlifter wouldn't even be able to put one foot in front of the other at the end of a 26 mile run, let alone being able to exert record-breaking force with each footfall! Nor should he ever try! On the other hand, that marathon runner would crumble into a pile of bones if he were dumb enough to climb under the half-ton of pig iron that the powerlifter plays with.
Strength is the universal requirement of all athletes in every sport. But you have to be careful to distinguish exactly what kind of strength you're talking about.
THERE ARE DIFFERENT KINDS OF STRENGTH?
In fact, there are at least 5 different categories of strength, and all sports require more or less of each and every kind (see Tables One and Two). The worse mistake a powerlifter -- or any other athlete -- can make is to neglect strength training. The second worse mistake would be to train for the wrong kind of strength!
SOME TRAINING TERMS YOU SHOULD BE FAMILIAR WITH
LIMIT STRENGTH: How much musculoskeletal force you can generate for one all-out effort. Limit strength is your athletic "foundation." All of your muscles should have a good level of limit strength. It's like building your house on a rock instead of in the sand. For most athletes, limit strength is what you try to achieve during your off-season training. Only powerlifters need to maximize their limit strength for competition. There are three kinds of limit strength:
1. eccentric strength: how much weight you can lower without losing control.
2. static strength: how much weight you can hold stationary without losing control
3. concentric strength: how much weight you can lift one time with an all-out muscle contraction.
ABSOLUTE STRENGTH is the same as limit strength with one important distinction -- Limit strength is achieved while "under the influence" of some form of work-producing aid (supplements, hypnosis, therapeutic techniques, etc.), while absolute strength is achieved through training alone -- "au natural." That makes "limit" strength more important for athletes. All athletes should take every available advantage science has to offer, short of using drugs or other illegal/against the rules techniques. "Absolute" strength is still an important concept for fitness enthusiasts, kids, and weekend warriors however. Usually, they aren't as "scientific" or as "dedicated to excellence" as are athletes, and may wish to train "au natural" for their fitness or sports goals.
SPEED-STRENGTH: Your coach may refer to this kind of strength as "power." Speed-strength, however, is a more descriptive term. There are two types of strength under the general heading of Speed-Strength: 1) starting strength and 2) explosive strength (explained below). "Speed-strength" is how well you apply force with speed.
STARTING STRENGTH: Your ability to "turn on" as many muscle fibers (muscle cells) as possible instantaneously. Firing a 100 mph fastball requires tremendous starting strength. So does each footfall in a 100 meter sprint, or throwing a quick knockout punch in boxing.
EXPLOSIVE STRENGTH: Once your muscle fibers are turned on, your ability to LEAVE them turned on for a measurable period is referred to as "explosiveness." A football lineman pushing his opponent, or a shot putter "putting" the shot as far as possible are examples of explosive strength in action. Olympic-style weightlifting (snatch and clean & jerk) is perhaps the best example of maximum explosive strength in action.
ANAEROBIC STRENGTH: The word "anaerobic" means "without oxygen." So, if your activity is performed without your muscles having to be supplied with oxygen in order to allow them to perform that activity, it's "anaerobic." Of course, you need oxygen to stay alive, and you'll have to "repay" your muscles the oxygen "debt" you owe after performing anaerobically. You do this by breathing hard once you stop. Scientists classify movements in sports as being "driven" by the "ATP/CP" energy pathway, the "glycolytic" pathway or the "oxidative" pathway. The first two do not involve oxygen and are therefore considered "anaerobic." ATP/CP refer to the biochemicals inside your muscles that produce energy for your muscles to work (adenosine triphosphate and creatine phosphate). Glycolytic refers to the sugar stored inside your muscles called glycogen. When you run out of ATP and CP, you have to begin using that glycogen to re-synthesize the ATP and CP so work can continue. Neither of these two muscle energy processes need oxygen for them to work.
LINEAR STRENGTH ENDURANCE: Your ability to sustain all-out, maximum running speed is an example of linear anaerobic strength endurance. Believe it or not, even Carl Lewis begins to slow down during the last 40 meters of a 100 meter race! The extent to which he is forced to slow down because of fatigue during the last half of the race is his measure of linear anaerobic strength endurance. The word "linear" simply means that the same movement is repetitively performed, such as your running strides. Marathon running, then, is an example of linear aerobic strength endurance.
NON-LINEAR STRENGTH ENDURANCE: Your ability to play with exceeding explosiveness play after play for four quarters is an example of non-linear anaerobic strength endurance. A powerlifter in competition must perform 9 maximum lifts on the lifting platform, and perhaps as many as 20 near-maximum warm-up lifts during a three or four hour competition. That also requires tremendous anaerobic strength endurance. And, because the lifts are performed with intervals of time between each (as opposed to rowing, running or other "linear" sports movements), it's called "non-linear" anaerobic strength endurance. Playing a particularly fast-paced basketball game or soccer match for an hour or two would be examples of non-linear aerobic strength endurance, with intermittent bursts of speed-strength (jumping, starting, dodging, etc.) also being displayed.
AEROBIC STRENGTH: The word "aerobic" means "with oxygen." The efficiency with which you get oxygen to your working muscles and remove the metabolic wastes that are building up there is called cardiovascular endurance, which is the key to exerting force under aerobic conditions. There are two kinds of aerobic strength: 1) linear and 2) non-linear. These two terms are described above in the discussion on anaerobic strength. Measures of your cardiovascular efficiency are 1) a low heart rate (how many times your heart beats each minute), 2) a high stroke volume (how much blood you pump out of your heart with each beat), 3) a high ejection fraction of the left ventricle (the percentage of blood in the left ventricle of your heart muscle that's pushed out with each beat, and 4) a high maximum oxygen uptake ability (how much oxygen your muscles use during exercise).
THE FACTORS AFFECTING STRENGTH
STRUCTURAL/ANATOMICAL
1. muscle fiber arrangement
2. musculoskeletal leverage
3. tissue leverage (interstitial and intracellular leverage stemming from fat deposits, sarcoplasmic content, satellite cell proliferation and the accumulation of fluid)
4. freedom of movement between fibers and between gross muscles (scar tissue and adhesions can limit muscles' contractile strength)
5. tissue viscoelasticity
6. intramuscular/intracellular friction
7. ratio of fast-, intermediate- and slow-twitch fibers
8. range of motion (must be normal)
9. freedom from injury
10. connective tissue (tendinous/ligamentous) mass & structural characteristics
PHYSIOLOGICAL/BIOCHEMICAL
11. stretch reflex (muscle spindles)
12. sensitivity of the Golgi tendon organ
13. endocrine system functions (hormones)
14. extent of hyperplasia (cell splitting) (?)
15. extent of myofibrillarization
16. motor unit recruitment capacity
17. energy transfer systems' efficiency
18. extensiveness of capillarization
19. mitochondrial growth and proliferation
20. stroke volume of the left ventricle
21. ejection fraction of the left ventricle
22. pulmonary (ventilatory) capacity
23. efficiency of gas exchange in the lungs
24. heart rate
25. max VO2 uptake (ml/kg bwt/min)
26 freedom from disease
PSYCHONEURAL/PSYCHOSOCIAL
27. arousal level ("psych")
28. tolerance to pain (pain of effort, stress or lactic acid accumulation in the cells and blood)
29. ability to concentrate ("focus")
30. incentive system installed (motivation)
31. social learning (effectiveness of deinhibititory efforts in overcoming learned inhibitory responses)
32. coordination ("skill" involving the efficient sequencing of activation/inhibition of prime movers, stabilizers and synergists; sequencing efforts involves factors of position, direction, timing, rate, speed & effect of force application)
33. "spiritual" factors (acknowledged but unexplained)
34. the "placebo" effect
EXTERNAL/ENVIRONMENTAL
35. equipment (use of "the best" available tools)
36. external environment (temperature, humidity, precipitation, wind, altitude)
37. effect of gravity
38. opposing and assisting forces (e.g., opponent's efforts may add to your force output vis a vis Newton's three laws of motion)
FACTORS WHICH AFFECT EACH CATEGORY OF
STRENGTH AND FACTORS AFFECTING MUSCLE MASS
TYPE OF STRENGTH CRITICAL SOMETIMES RARELY
FACTORS IMPORTANT IMPORTANT
____________________________________________________________
ABSOLUTE* 1 2 3 4 7 5 6 8 11 14 19 20 21 22
AND LIMIT 9 10 12 13 17 18 28 32 23 24 25
STRENGTH 15 16 26 27 33 34 36 37
29 30 31 35 38
____________________________________________________________
SPEED- 1 2 4 5 7 9 8 17 18 19 3 6 14 20
STRENGTH 10 11 12 13 27 28 32 33 21 22 23 24
15 16 26 27 34 36 37 38 25
29 30 31 35
____________________________________________________________
ANAEROBIC 2 4 7 9 15 1 5 8 10 11 3 6 14
STRENGTH 17 18 19 26 12 13 16 20
28 30 31 35 21 22 23 24
25 27 29 32
33 34 36 37 38
____________________________________________________________
AEROBIC 4 7 9 17 18 1 2 8 13 15 3 5 6 10 11
STRENGTH 19 20 21 22 16 29 32 33 12 14 27 38
23 24 25 26 34 36 37
28 30 31 35
____________________________________________________________
MUSCLE 3 13 14 15 4 7 9 10 16 1 2 5 6 8
MASS FOR 18 19 28 17 27 29 30 11 12 20 21
BODYBUILDING 31 33 34 36 22 23 24 25
32 35 37 38
____________________________________________________________
* Note: Absolute strength is an "obsolete" concept in the trenches of elite competitive sport. Limit strength -- strength while "under the influence" of some form of ergogenic aid (substances and/or techniques) -- is more germane. However, beginners, kids, weekend warriors and fitness enthusiasts who have little need or interest in a highly disciplined approach to strength still work out "au natural" and therefore the concept of absolute strength still has relevance.
THE EIGHT TECHNOLOGIES OF POWERLIFTING TRAINING
1. Weight Training Dumbbells, barbells, fluids, pressurized air, elastic devices, springs, and the host of devices designed to provide "heavy" external resistance to one's musculoskeletal effort all constitute "resistance training."
Tradition has it that exercises designed to be performed with dumbbells and barbells (and the technologies designed to simulate traditional dumbbell and barbell movements) constitutes "weight training." The existing categories of weight training technologies are 1) constant resistance devices,
2) variable resistance devices,
3) accommodating resistance devices and 4) static resistance devices. New technologies will be developed in time.
2. Special Forms of Resistance Training:< Running, swimming, calisthenics, aerobic dance, plyometrics -- there are many more -- all are special forms of "light" resistance training. When bodyweight alone is the source of resistance, tradition and reasons of clarity dictate that they be referred to by their individual names. Cycling, rowing, stair-climbers, and similar forms of training which utilize "light" external resistance collectively constitute a second category of light resistance training which are also referred to by their respective names.
3. Psychological Techniques: Self-hypnosis, mental imagery training, transcendental meditation and a lot of other "mind games" can help improve your strength output capabilities in sports and training.
4. Therapeutic Modalities: Whirlpools, electrical muscle stimulation, massage, ultrasound, music, intense light, and a host of other therapies can have a very positive effect on your strength training efforts, both indirectly (how quickly you can recover from your previous workout), and directly (greater force output).
5. Medical Support: Periodic checkups, exercising preventive care, chiropractic adjustments, and even clinical use of prescription drugs are sometimes indicated for athletes in heavy training when medical problems arise. Only qualified sportsmedicine specialists are able to prescribe such support.
6. Biomechanics (Skill Training): Performing your skill perfectly will almost always result in greater force being applied, whether it is applied to an object, opponent or the ground. Good skills execution involves the efficient sequencing of activation/inhibition of prime mover, stabilizer and synergistic muscles. Your sequencing efforts involve factors of position, direction, timing, rate, speed & effect of force application.
7. Dietary Practices: Athletes don't eat only to stay alive and healthy; they eat to excel at their sport. Their eating is designed to assist in achieving specific sports/training objectives. There are many nutritional techniques that will ensure greater force output capabilities both immediately as well as over time, thereby improving your training and competition efforts. Despite your most dedicated efforts, however, you will not be able to gain ample nutritional support from food alone, a point which has been supported time and time again in sports nutrition research.
8. Nutritional Supplementation: Most often, eating is not sufficient to give you all the nutrients you need in order to achieve your sports/training objectives. This point is widely disputed among sports scientists and nutritionists alike, who would have us believe that eating "three square meals" per day is ample fare for athletes in heavy training. They overlook at least three important points: 1) many state-of-the-art supplements are designed to take your body beyond normal biochemical functioning, 2) no one on Earth consistently eats "square meals," and 3) myriad research reports clearly show that deficiencies most often exist in athletes' diets for many well-documented reasons.
WHAT STRENGTH LOOKS LIKE
(Graphic did not reproduce)
1. This is the beginning of your movement. Rear back to throw, foot hits the ground and your knee bends, or squat down to jump. All involve "eccentric" strength.
2. You make the transition from backward to forward, from down to up. "Static" strength is required.
3. Force is applied in hitting, throwing, jumping or the push-off in each running step. Involves "concentric” strength.
4. It takes a fraction of a second usually to exert your maximum amount of force. Speed-strength is required.
5. This is the maximum amount of force you impart while throwing, hitting, jumping or running.
6. You never quite equal your "limit" or "absolute" strength levels in sports movements (except powerlifting) because the movements are over with so quickly.
7. The ONLY reason for EVER training for sports is to make the gentle, easy strength curve on the left look more like the CHECKMARK on the right.
MATCHING TRAINING TECHNOLOGIES TO TRAINING OBJECTIVES
"Gotta go train" is a phrase heard by powerlifting spouses everywhere. What does it mean? Save for the crafty pencilneck who uses it as a convincing excuse to go out carousing (his wife is easily duped because he's in desperate need of training), it typically means going to a gym to lift weights.
Tch tch! Lifting weights is NOT training! It's certainly an integral part of training, but there's so much more. So far we've identified what strength is and where it comes from. Now we have to lay down some simple guidelines as to how each of the factors affecting strength can be augmented. Remember that there are at least 38 factors which affect strength, and these factors are classified into four main groupings.
Some of the factors listed under "sometimes important" may indeed be important some of the time, especially among beginners who have no background in high-level training for strength. But, let's concentrate on the "critical" factors, as they are the ones that will give most of us the greatest returns in limit strength and speed-strength for both immediate and long-term powerlifting excellence.
Your job -- which I've done for you -- is always going to be to identify -- and apply -- those technologies which BEST augment each of the respective factors, and arrange them into a coherent, integrated training program for your sport.
1. Muscle Fiber Arrangement
Sorry folks, nothing you can do about this one. You can, however, take advantage of your knowledge about how the fibers of each muscle are arranged. We're talkin' "new concept" here! Some are made for speed, some for great limit strength, some for stability and some are made for all three. Train them that way! (Once in awhile, at least.). The technology of choice: biomechanics (skill) training.
2. Musculoskeletal Leverage
Again, nothing you can do short of radical surgical procedures will change your leverages. But, by knowing how best to take advantage of your leverage systems' structure, efficiency in lifting techniques (and thus your strength output) will be optimized on the platform as well as in the gym. The technology of choice: biomechanics (skill) training.
3. Tissue Leverage:
Interstitial and intracellular leverage stemming from fat deposits, sarcoplasmic content, satellite cell proliferation and the accumulation of intracellular fluid all provide a sort of "bloat" factor to your body. Aside from certain androgens (highly illegal and dangerous), the best way to improve this is through sheer gluttony!
That means the big boys in the sport -- the guys in the 275s and supers. I believe the phrase is "pig out." For the rest of you, it's not a tenable source of improved limit strength, except for the small amount of tissue leverage improvement you may be able to muster after weigh-ins (just before the contest begins). The technology of choice: dietary and supplementation manipulation.
4. Freedom of Movement Between Fibers
Adhesions and scar tissue between muscle fibers and between gross muscles can limit your muscles' ability to contract fully. Neuromuscular reeducation, post-workout rolfing and other forms of deep fiber massage (often called "sports massage") are the best therapies. Post-workout ultrasound treatments and post-workout whirlpool or hard-beating shower on your just-trained muscles also helps tremendously in eliminating or avoiding these strength-limiting adhesions and scar tissue. The technologies of choice: biomechanics (skill) training, various therapeutic modalities, and medical support systems.
5. Tissue Viscoelasticity
All of your muscles have a certain amount of "elasticity." That is, when you stretch them, they tend to return to their resting length. This tendency can be dramatically increased by rapid stretching, much the same as rearing back sharply before throwing a punch. If you rear back slowly, the muscles' natural viscoelasticity will not aid in the return movement. Sound nutritional practice (which goes far beyond the pencilneck fare recommended by the FDA) and ballistic training under controlled conditions are the best methods of improving or preserving tissue viscoelasticity. The best way to lose it is to use androgenic drugs. The technologies of choice: various therapeutic modalities, biomechanics (skill) training, and dietary and nutritional supplementation strategies.
7. Ratio of Fast-, Intermediate- and Slow-Twitch Fibers
It used to be believed that heredity controlled your fiber ratios. True to a large degree. However, you can indeed make white fiber a bit more "pink" (a no-no for serious powerlifters), and red fiber a bit more pink (a yes-yes). Engaging in VERY explosive training will accomplish this task nicely. The technologies of choice: biomechanics (skill) training, weight training and various other forms of light resistance training.
9. Freedom From Injury
Obviously! An injury can keep you from your goal of greatness. Even minuscule ones can nag you enough to prevent you from exhibiting your maximum strength output. What's the best way to treat injuries? Avoiding them in the first place! That means following excellent technique and integrated training principles. The technologies of choice: medical support systems, various therapeutic modalities, biomechanics (skill) training, weight training and various other forms of light resistance training.